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A V E R A G I N G  O F  T H E  E Q U A T I O N S  O F  

T H E R M A L - R A D I A T I O N  T R A N S F E R  I N  A P L A S M A  

S. I. Kas'kova and G. S. Romanov  UDC 533.5:537.56 

Consideration is given to methods of averaging the equation of radiation transfer for the diffusion and 

"forward-backward" double-flow approximations. Allowance for the anisotropy of the indicatrices of 

radiation in the three-temperature approximation is shown to lead to substantial changes in the averaged 

transfer equations. Actually, the equations involve the temperature difference to the first power, which is 

significant when problems with nonequilibrium radiation conditions are considered. 

In solving a number of gasdynamic problems for which transfer of energy by radiation plays a significant 

and sometimes a decisive role, the approximation of radiation heat conduction often turns out to be inadequate. 

This is particularly true of flows in zones of sharp gradients of gasdynamic quantities or in zones with high rates 

of change of the parameters, typical examples of which are shock waves and rarefaction waves. Bearing in mind 

the need for working (although modeling in some respects) equations of transfer of energy by radiation as applied 

to such flows under conditions where a dominant role is played by radiation of the continuous spectrum, we consider 

the procedure for frequency averaging of spectral equations that describe energy transfer by radiation. First we 

consider the diffusion approximation and then the double-flow Cforward-backward") approximation. 

1. Diffusion Approximation. As is known (for example, [ 1 1) when the anisotropy of the radiation is weak, 
the radiation transfer equation 

o G  
3---7- + div Sv = cKv (Uveq - Uv) (1) 

is supplemented by the equation 

= _ = - - ,  (2) 
3 Jv v 

which is a definition of the spectral radiation flux Sv. In (1) and (2), Uve q and Uv are the equilibrium and 

nonequilibrium spectral radiation densities; x~ is the coefficient of absorption at the frequency v corrected for forced 

emission;/~ is the corresponding radiation mean free path. System (1) and (2) determines completely the radiation 
in the approximation considered. 

The ordinary procedure for averaging the system (1) and (2) over frequencies [1] causes them to be 
replaced by the equations 

OU 
0-7 + div S = ck-(Ueq - U), (3) 

c ~VU" Y= l / Z ,  (4) , 

which, strictly speaking, hold true only in the case of a "gray" substance, i.e., a substance with a frequency-inde- 

pendent absorption coefficient. When the dependence of the absorption coefficient xv on the frequency is strong, 
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Rosseland or Planck (for small optical thicknesses) averaging of the coefficient x~ and the radiation mean free path 

/; over the frequency is used; the quantities k"and Tobtained in this manner are used in Eqs. (3) and (4). Noteworthy 

is the fact that, in this case, first, the same law of averaging of the factors in the terms x~,U,,eq and x~,U,, in (1) is 

assumed (the same weighting function) and, second, in (2), /~ is averaged with the function U~eq instead of Uv; 

furthermore, in solving specific problems we often assume k" = 1/~. 

The above makes it necessary to dwell in greater detail on the problem of averaging of Eqs. (1) and (2). 

First of all, we note the following. The presented procedure for frequency averaging is based on the fact that the 

weighting functions with which the averaging is performed are obtained from the equilibrium radiation density 

Uveq, i.e., in averaging Uv-containing terms it is assumed in essence that there is no frequency nonequilibrium of 

the spectrum - Uveq and Uv as functions of the frequency are analogous. Simultaneously, the dependence on the 

temperature T coincident with the substance temperature that is contained in Uveq is used automatically in Uv. If 

the assumption of the Planck form of Uv is the only possible one and it can be made in this case in order to perform 

averaging in general form without determining Uv by solving system (1) and (2), the assumption of equality of the 

radiatioo temperature TI and the substance temperature T is absolutely superfluous since when the function U v is 

prescribed in the Planck form we need only introduce the parameter T1 that has the meaning of the radiation 

temperature and is not necessarily equal to T. Use of the diffusion approximation in cases where the difference 

between Uveq and Uv is large requires that this difference be allowed for in averaging not only the function U itself 

but also the coefficients in the transfer equations. Indeed, for example, for a bremsstrahlung mechanism of 
absorption and emission, x v - T  -3"5 and / ~ - 7  "35, i.e., the temperature dependence of the coefficients in the 

equations is almost the same as the dependence that is introduced by Uv after averaging. 

On this basis we will average Eqs. (1) and (2) with Uv and Uveq prescribed by the corresponding Planck 

expressions: 

8~rhv 3 1 8z~hv a 1 (5) 
= , U v e q -  

exp - 1 exp ~ - 1 

for the specific case of a gas in the reqion of multiple and "total ionization with bremsstrahlung absorption and 

photoabsorption. The coefficient of total absorption @ with a correction for forced emission is [ 1 ] 

Integrating (1) and (2) on the left and the right over the frequency going from 0 to co, we have 

OU 
0--7 + div S = c (XeqUeq - KU), 

4aT 4 4crT14 . (7) 
eqdv ~ "  U =  ~ Uvdv= U e q -  Uv = C" ' C ' 

0 0 

and by definition 

z~5~ 4 (8) 
= - - - e l V U ;  S = ~ S v d v ;  ~ - - -  

3 o 15h3c 2 '  

Keq = Ue  q - - ;  x = - -  U ; I =  dU 

dT 1 

(9) 
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Next we calculate tCeq , to, and l in the average-charge approximation according to [21. Introducing additionally the 

notation h v / k T  1 = v, h v / k T  = u, -~. = J / k T ,  and f -- T / T  1, we have 

3 
T ~  e v ( 1 - e x p ( - u ) ) d u  

3 
0 u e x p v -  1 15 ~4 

K = K 0 4 = KO ~ / J  X 
2"g 

1--5 T1 

x f e x p ( u ( 1 - f l ) )  l - e x p ( - u )  d u + 7  e x p ( - d . - f l u )  
o I - exp ( -  flu) -d. 

/ 
1 - e x p ( - u )  du[, 

1 - exp ( -  f u )  

0o) 

where r0 is the absorption coefficient in the average-charge approximation, de termined  in [21. Since x = ~Ceq for fl 

= 1, we find Xeq: 

15 (11) 
tCeq = ~ t c  0 (1 + u . ) .  

Generally speaking, expression (10) for x can be simplified in different ways depending on the quantity ~. = 

-J /kT;  however, the closeness of f to unity is often used (recall that f -- (Ueq /U) l / 4 ) .  Then, assuming 1 - exp 

( - f l u )  = 1 - exp ( - u )  in the integrand, we obtain 

15 f14 exp ((1 -- fl) u.) -- f 
x = ---~x 0 

(12) 

W h e n f - - ,  1, (12) becomes (11). 
Let as determine l now. From (9) and (6) with the use of the average-charge model we find 

1 
l = - -  

tC 0 

4 3 
f12 f u exp  Ou) u - -  

0 (exp (flu) - 1) 2 1 - exp ( -  u) exp ( -  qJ) du 

4~ 4 

i5 

7 m 
1 15 /32 u e x p ( - q J - ~ u )  du 

t% 4~ 4 0 (1 -- exp (-- u)) (1 exp (-- f lu))  2 

I 7 7 ] (13) 15 l f 2  ~* - f u exp ( -  (1 +/5)) du + u 7 exp ( -  ~ .  - flu) du . 
4~ 4 tc 0 0 ~. 

Here  the final express ion  is determined by the value of ~.. We can dist inguish three cases: 1) ~.  _< 1; 2) 

3.5 < ~.  < 7; 3) ~ .  > 7, The  result for fl - 1 differs little from [2 ], and we do not give it here. 

Let us consider the final expressions for the case ~. -< 1 and f - 1. We have 

15 041 + U. f13 15 1 7!  30 1 _l(Rf ) 1  
x = --'~- K O p / / :  - - f l  - tCeq , l -- 4 4  to0 f6  exp ( -  u . )  -- ~:eq f16 f 6 "  (14) 

Then the averaged t ransfer  equations lake the form 

--OU + d i v S o t  = CKeqUeq (1 - ~ ) '  ~ -~  ( ~ e q ) 1 / 4 ,  
(15) 
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c 
- - - -  V U .  ( 1 6 )  

3 tCeq 

We compare (15) and  0 6 )  with (3) and (4), where, for k"and ~, we take the commonly used Rosseland 

means,  which are equal to ~"-- l / T =  1//(R r) = tCeq/30 for the considered case of photo and bremsst rahlung 

mechanisms of absorption. It can be seen that when fl = 1 Eq. (16) coincides with (4) while (3) differs from (15) 

both in form and in numerical  coefficient - an addit ional  numerical factor of 30 appears in (15) on the right (for 

u. << 1). In the part icular  case fl --, l, the r igh t -hand  sides of (3) and (15) differ  by a factor of - 7.5 since 

Ueq - U = Ueq(1 - 1/fl4). We note that the appearance of the indicated factor means  an increase in the intensity 

of energy transfer between the radiation and the substance by the same factor, which can have a substantial  effect 

on the gasdynamics, especially in a region that is nonequilibrium in the radiation. Finally, we note that  in the case 

~.  <_ 1 and fl --, 1 the indicated difference is smallest. However, conditions where - J / k T  ~ -~. >> l are very frequent, 

the difference increasing strongly.  Apart from numerical differences there is, of course, a more significant qualitative 

difference between systems (15) and (16) and (3) and (4): the radiation densi ty U enters (3) and (4) linearly, 

i.e., in the quasistationary case (OU/Ot  = 0) these equations can be integrated formally when needed;  in general 

form system (15) and (16) is not integrated because of the nonlinearity. 

The  results obta ined above indicate that nonequilibrium of the radiation, in a number of cases, can play a 

significant role and can lead to results that differ quantitatively and qualitatively from the solutions yielded by the 

t ransfer  equations in the approximation of TI -- T. It is also evident that the averaged transfer equations (3) and 

(4) can give a distorted representat ion of the real process of heat exchange between the radiation and the substance 

since ~ 1/~'. The  two-temperature  approximation with temperatures of the substance T and the radiat ion T 1 that 

are different from one ano the r  is used rather f requent ly  in problems of radiat ion gasdynamics in the presence of 

large gradients of the parameters ,  where the radiation does not come into equilibrium with the substance [3 ]. In 

this case, however, it seems more consistent to introduce two temperatures for the radiation field because of its 

anisotropy. In heating a substance by radiation (or cooling due to luminescence) at a fixed point of space, one- 

direction flows correspond to radiation with significantly different intensities, i.e., the temperatures T+ and T_. 

We consider this problem using the double-flow approximation as an example [ 1 ]. 

2. Double-Flow Approximation {"Forward-Backward" Approximation).  Th e  radiation t ransfer  equations 

in the double-flow approximation for the plane case can be written in the form [ 1 ] 

1 1 os+  + (17) 
c Ot + 2 O~ - t% (Jveq - Jv ) ,  

1 0 J  v 1 0 J  v ( 1 8 )  

c O----l- + 2 0 l  - toy (Jveq - J r ) "  

Equations (17) and 0 8 )  are  obtained from the exact equation of radiation t ransfer  

1 0 J  v 

C O---i- + ~2 V J  v = K v (Jveq - Jr) (19) 

by averaging it over the angles in the corresponding hemispheres - separately for the positive and negative x 

directions; in each hemisphere,  the radiation intensi ty J+  or J~- belonging to it is assumed to be isotropic but 

J+ ;~ J~-. In (17) and (18), Jveq is the equilibrium radiation intensity 

Jveq = 
CUre q _ 2hv 3 1 (20) 

x hv 
43r c exp ~ - 1 
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The density of nonequilibrium radiation /-Iv and the radiation flux Sv of frequency v are related to J+  and J~- by 

the expressions 

Uv = 2 ~  + T + = (J+ - L - ) ,  (21) 

since by definit ion Uv = I f  Jvdf2 and Sv = f J~ cos Odf2, where dO = 2n sin OdO. 

We average (17) and (18), assuming an equilibrium form of J f  as a function of frequency: 

j +  2:rv 3 1 ; j~- = 2.Try 3 1 , U + 
- ~  hv 2 hv �9 U =  + U - ;  

c e x p . -  1 c e x p . -  1 

oo + C U • U -  "~o" 4 j+_ 4 
J •  = f J v d ' l "  = ~ ; = c T •  ; = Jeqfl+--- , 

0 

(22) 

i.e., the degree of nonequilibrium of the radiation will be characterized by the temperatures T+ and T_ of quanta 

traveling in the positive and negative x directions, respectively. The  absorption coefficient is again taken in a form 

[2] that co r responds  to photo and  bremsstrahlung absorption in the region of multiple and total ionization. 

Integrating (17) and  (18) on the left and the right over v from 0 to oo using (22), we have for the intensity J+  

1 0 J  +- +_" 1 0 J  • + (23) 
c 0---'7- 2 0--"-~ = XeqJeq -- r •  

or for the radiat ion densities 

OU +- 
or +- 2 Ox - c KeqUeq - K •  • . 

Here Keq and x___ a r eg iven  by the expressions 

0 , x• = o U • (25) 
Keq - -  Ue q 

The total radiat ion density U and the flux S integrated over the spectrum are 

r 
U = U  + + U - ,  S = ~ ( U  + - U - ) .  (26) 

The equations for  finding them are obtained as usual by addition and subtraction of Eqs. (24): 

OU 
OUot ff-xOS - (K + U + + x_U-)  ] c Ox + = C [/CeqUeq = - c [x+U + - x _ U - l .  (27) 

As follows from (25) Keq coincides completely with the definition of '~eq given by formulas (9) and (11) in the 

diffusion approximation.  The coefficients x_+ are calculated from (10), where fl = r •  and/3_+ = T/T•  should be set. 

We only need to note that according to the meaning itself of introducing the double-flow approximation the 

quantities r •  can differ significantly from unity now, and therefore there can be no fur ther  simplification of the 

formulas for x•  analogous to passage from (10) to (12). 

Let us now compare  the f requency-averaged  equat ions  of the double-f low (27) and diffusion (7) 

approximations. A significant difference between them is that in (27) the terms K+U + -+ x _ U - ,  upon replacing 
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U +- in them using (26), contain not only U but also S while in (7) S is not involved in the corresponding sides of 

the equations. Because of this it is purposeless to change from (24) to (27) for the double-flow approximation; in 

solving various specific problems, we can use system (24) and prescribe its relationship with the remaining equations 

of gasdynamics in terms of (26). We also note that it is precisely in the irreducibility of (27) to a form analogous 

to (7) for/3+ # r _  that the possibility of considering problems that are strongly anisotropic in radiation, for 

example, the problem of the cooling of a heated medium through a surface bordering a vacuum by luminescence, 

which is built into the double-flow approximation, manifests itself. On the other hand, when the anisotropy is weak 

(when/3+ -/3_) the double-flow approximation, as is well known, is practically no different from the diffusion 

approximation. All the above together provides a serious basis for using the double-flow approximation (needless 

to say, averaged in the manner presented above) in problems for which introduction of nonequilibrium transfer of 

radiation is dictated by necessity. Finally, we note that if the angular dependence of the radiation intensity is 

allowed for more accurately, generalization to the case of a large number of angles and, accordingly, radiation 
temperatures is evident. 

The work was supported by project B23-96 of the International Science and Technology Center. 

N O T A T I O N  

Sv, spectral radiation flux; Uveq and Uv, equilibrium and nonequilibrium spectral radiation densities; c, 

velocity of light; t~'v, coefficient of absorption at the frequency v corrected for forced emission; l',,, corresponding 

radiation mean free path; T, temperature of the substance; T1, temperature of the radiation; h, Planck constant; 

a, Stefan-Boltzmann constant; x0, absorption coefficient in the average-charge approximation; k, Boltzmann 

constant; Jm, ionization potential of a particle of multiplicity m; J,  radiation intensity; Jveq, equilibrium radiation 

intensity; Q, solid angle; 0, angle between the direction of radiation propagation and the x axis; qJ, step function 
determined by formula (1) of [21. 
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